Meet Us at GITEX Africa
Facia.ai
Company
About us Facia empowers businesses globally with with its cutting edge fastest liveness detection
Campus Ambassador Ensure countrywide security with centralised face recognition services
Events Facia’s Journey at the biggest tech events around the globe
Innovation Facia is at the forefront of groundbreaking advancements
Sustainability Facia’s Mission for a sustainable future.
Careers Facia’s Journey at the biggest tech events around the globe
ABOUT US
Facia is the world's most accurate liveness & deepfake detection solution.
Facial Recognition
Face Recognition Face biometric analysis enabling face matching and face identification.
Photo ID Matching Match photos with ID documents to verify face similarity.
(1:N) Face Search Find a probe image in a large database of images to get matches.
DeepFake
Deepfake Detection New Find if you're dealing with a real or AI-generated image/video.
Detect E-Meeting Deepfakes Instantly detect deepfakes during online video conferencing meetings.
Liveness
Liveness Detection Prevent identity fraud with our fastest active and passive liveness detection.
Single Image Liveness New Detect if an image was captured from a live person or is fabricated.
More
Age Verification Estimate age fast and secure through facial features analysis.
Iris Recognition All-round hardware & software solutions for iris recognition applications.
Complete playbook to understand liveness detection industry.
Read to know all about liveness detection industry.
Industries
Retail Access loyalty benefits instantly with facial recognition, no physical cards.
Governments Ensure countrywide security with centralised face recognition services
Dating Apps Secure dating platforms by allowing real & authentic profiles only.
Event Management Secure premises and manage entry with innovative event management solutions.
Gambling Estimate age and confirm your customers are legitimate.
KYC Onboarding Prevent identity spoofing with a frictionless authentication process.
Banking & Financial Prevent financial fraud and onboard new customers with ease.
Contact Liveness Experts To evaluate your integration options.
Use Cases
Account De-Duplication (1:N) Find & eliminate duplicate accounts with our face search.
Access Control Implement identity & access management using face authorization.
Attendance System Implement an automated attendance process with face-based check-ins.
Surveillance Solutions Monitor & identify vulnerable entities via 1:N face search.
Immigration Automation Say goodbye to long queues with facial recognition immigration technology.
Detect E-Meeting Deepfakes New Instantly detect deepfakes during online video conferencing meetings.
Pay with Face Authorize payments using face instead of leak-able pins and passwords.
Facial Recognition Ticketing Enter designated venues simply using your face as the authorized ticket.
Passwordless Authentication Authenticate yourself securely without ever having to remember a password again.
Meeting Deepfake Detection
Know if the person you’re talking to is real or not.
Resources
Blogs Our thought dumps on all things happening in facial biometrics.
News Stay updated with the latest insights in the facial biometrics industry
Whitepapers Detailed reports on the latest problems in facial biometrics, and solutions.
Webinar Interesting discussions & debates on biometrics and digital identity.
Case Studies Read how we've enhanced security for businesses using face biometrics.
Press Release Most important updates about our activities, our people, and our solution.
Mobile SDK Getting started with our Software Development Kits
Developers Guide Learn how to integrate our APIs and SDKs in your software.
Knowledge Base Get to know the basic terms of facial biometrics industry.
Most important updates about our activities, our people, and our solution.
Buyers Guide
Complete playbook to understand liveness detection industry
In This Post
Presentation attacks on facial recognition systems are increasing at an alarming rate. It is complicated to detect different forms of Presentation attacks without cutting-edge facial recognition software that can deter fraudulent attacks like the famous ‘Mask Attack’. Preventing Mask Attacks requires comprehensive knowledge about this malpractice and facial identity verification solutions like Facia must prioritize its prevention at the center of their Presentation attack detection capabilities.
Mask Attack is a fraudulent practice in which a facial recognition system is deceived by wearing a facial mask that can be prosthetic, paper, or any other highly realistic mask that has the capability of outwitting the Facial Recognition technology. Facial recognition software works by detecting, verifying, and authenticating the facial features of an individual. For this purpose, they have unique technologies including a parametric approach to verify digital facial identities.
Despite the stringent Face ID checks and robust anti-fraud features, Mask Attacks are also advancing through digitally crafted spoofing techniques, posing a challenge to swift and accurate facial verification.
A Mask Attack itself is a type of presentation attack. Several techniques are employed to carry out a mask attack to spoof an identity verification system with facial recognition. Here is a list of 6 major techniques used by fraudsters to spoof identities:
So far, we have understood the working and different dimensions of mask attacks. Despite its complicated web and its risky threat vectors, mask attacks can be detected and prevented. The core of detecting any type of identity spoof attack is liveness detection. This technique if incorporated accurately can effectively differentiate between an actual living person and a potential spoof (non-alive) face in front of the facial biometric scanning device. So far, almost every top-notch IDV solution follows liveness detection as a benchmark to scale their facial recognition systems.
Liveness Detection further has 2 types in the Identification of users through biometrics:
Active Liveness check confirms that a real alive person is sitting in front of the camera for facial biometrics. It ensures that there is no picture replayed video or image attempting to bypass the facial identification checks.
In Passive Liveness, a recorded video or image from a phone or another display device is played before the biometric facial recognition system. Passive liveness will check and confirm if any video replay or picture mask replay attack is being carried out.
Usually, Liveness Detection is confused with another parameter of gauging a facial verification solution’s performance which is known as ‘Biometric Matching Accuracy’.
Biometric Matching Accuracy in facial recognition is one of the most important aspects of facial recognition. The main governing or standard-setting body for Identification solution providers is the National Institute of Standards and Technology (NIST).
Facial Biometric Matching Accuracy while detecting mask attacks through facial recognition solutions is one of the best ways to prevent mask attacks for illicit gains. Banks, FIs, crypto exchanges, and other fintech firms require robust facial recognition for secure customer onboarding.
Facia brings a unique web of swiftness and accuracy in detecting bypass attempts in facial IDV systems. Whether it’s mask attacks or morphing attempts, Facia is your weapon of choice in identity fraud prevention. It incorporates different cutting-edge technologies to identify the latest threat vectors. With being highly committed to complying with all NIST standards and other industry best practices, Facia envisions a secure digital onboarding for everyone.
Masks pose a challenge to facial recognition because they cover significant facial features, making it harder for systems to accurately identify individuals. Traditional facial recognition relies heavily on visible parts like the nose, mouth, and chin. When these features are obscured, recognition accuracy can significantly decrease. However, the Facia system is foolproof to all these tricks.
Yes, facial recognition systems can sometimes be fooled by a mask, especially if the system hasn't been specifically trained to handle this challenge. Masks that are carefully designed to mimic someone's appearance or that contain realistic features can bypass certain facial recognition software. However, the Facia system is foolproof to all these tricks.
Vulnerabilities include:
Advanced systems like Facia can detect individuals wearing masks by focusing on visible features like the eyes and upper nose region. It uses sophisticated algorithms trained to work with masked faces.
A 3D mask attack involves creating a high-quality, realistic 3D mask using materials like biodegradable plastics or PLA to replicate a person's face. Such masks are designed to bypass facial recognition by presenting a highly accurate imitation of someone's facial structure and features.
A 3D print attack uses a 3D-printed image of a real face, providing depth and detail. The print mimics the genuine facial features to deceive recognition software, particularly when environmental aspects like lighting and texture are accurately considered.
24 Mar 2025
Fraud Prevention Strategies That Businesses Can Follow in 2025
In 2025, fraud prevention will become more difficult as...
06 Mar 2025
How Deepfake Detection Technolgy Transformed the 7 Major Industries
Deepfake technology is speedily growing from a specific artificial...
05 Mar 2025
Australia Forcing to Implement Age Verification Laws of Social Media
The government has also stressed that any verification processes...
Recent Posts
Replay Attack–How It Works and Methods to Defend Against It
Previous post
Analyzing Solicitors Regulation Authority (SRA)’s Update | Highlighting Deepfake Threat to Law Practitioners
Next post
Understanding Face Morphing | A Threat Vector and Its Prevention Techniques
Related Blogs