Meet Us at GITEX Africa
Facia.ai
Company
About us Facia empowers businesses globally with with its cutting edge fastest liveness detection
Campus Ambassador Ensure countrywide security with centralised face recognition services
Events Facia’s Journey at the biggest tech events around the globe
Innovation Facia is at the forefront of groundbreaking advancements
Sustainability Facia’s Mission for a sustainable future.
Careers Facia’s Journey at the biggest tech events around the globe
ABOUT US
Facia is the world's most accurate liveness & deepfake detection solution.
Facial Recognition
Face Recognition Face biometric analysis enabling face matching and face identification.
Photo ID Matching Match photos with ID documents to verify face similarity.
(1:N) Face Search Find a probe image in a large database of images to get matches.
DeepFake
Deepfake Detection New Find if you're dealing with a real or AI-generated image/video.
Detect E-Meeting Deepfakes Instantly detect deepfakes during online video conferencing meetings.
Liveness
Liveness Detection Prevent identity fraud with our fastest active and passive liveness detection.
Single Image Liveness New Detect if an image was captured from a live person or is fabricated.
More
Age Verification Estimate age fast and secure through facial features analysis.
Iris Recognition All-round hardware & software solutions for iris recognition applications.
Complete playbook to understand liveness detection industry.
Read to know all about liveness detection industry.
Industries
Retail Access loyalty benefits instantly with facial recognition, no physical cards.
Governments Ensure countrywide security with centralised face recognition services
Dating Apps Secure dating platforms by allowing real & authentic profiles only.
Event Management Secure premises and manage entry with innovative event management solutions.
Gambling Estimate age and confirm your customers are legitimate.
KYC Onboarding Prevent identity spoofing with a frictionless authentication process.
Banking & Financial Prevent financial fraud and onboard new customers with ease.
Contact Liveness Experts To evaluate your integration options.
Use Cases
Account De-Duplication (1:N) Find & eliminate duplicate accounts with our face search.
Access Control Implement identity & access management using face authorization.
Attendance System Implement an automated attendance process with face-based check-ins.
Surveillance Solutions Monitor & identify vulnerable entities via 1:N face search.
Immigration Automation Say goodbye to long queues with facial recognition immigration technology.
Detect E-Meeting Deepfakes New Instantly detect deepfakes during online video conferencing meetings.
Pay with Face Authorize payments using face instead of leak-able pins and passwords.
Facial Recognition Ticketing Enter designated venues simply using your face as the authorized ticket.
Passwordless Authentication Authenticate yourself securely without ever having to remember a password again.
Meeting Deepfake Detection
Know if the person you’re talking to is real or not.
Resources
Blogs Our thought dumps on all things happening in facial biometrics.
News Stay updated with the latest insights in the facial biometrics industry
Whitepapers Detailed reports on the latest problems in facial biometrics, and solutions.
Webinar Interesting discussions & debates on biometrics and digital identity.
Case Studies Read how we've enhanced security for businesses using face biometrics.
Press Release Most important updates about our activities, our people, and our solution.
Mobile SDK Getting started with our Software Development Kits
Developers Guide Learn how to integrate our APIs and SDKs in your software.
Knowledge Base Get to know the basic terms of facial biometrics industry.
Most important updates about our activities, our people, and our solution.
Buyers Guide
Complete playbook to understand liveness detection industry
On June 6th, 2024, the FATE Morph research publication by NIST entitled NISTIR 8292 DRAFT SUPPLEMENT was updated. This testing is regularly carried out on facial recognition solutions to analyze their performance in presentation attack detection like face morphing. Two primary quantities; APCER & BPCER are reported that are the determinants of the accuracy and robustness of a facial recognition tool.
In this knowledge base, we will explain the first quantity metric i.e. APCER.
APCER is an acronym for Attack Presentation Classification Error Rate which is defined as the frequency of a biometric facial recognition tool with which it wrongly accepts a biometric presentation attack as a genuine face presentation. It is also termed the ‘Morph Miss Rate’ in NIST research and testing publications.
It is calculated in the following equation:
The number of morph images wrongly classified as bona fide images is divided by the total number of actual morph attack images.
As per NIST findings, it is not possible to calculate APCER alone until and unless:
Based on the above set value, APCER values are calculated for different biometric identity solution providers by NIST.
Look at the statistical explanation of APCER’s calculation above a threshold below:
Here is the analytical summary of APCER in biometrics values under different image sets presented to the algorithm tested by NIST:
A single image (morphed or bona fide) is presented to the algorithm.
Here are the summarized results:
Max: 0.998
Average: 0.47
Max: 1.000
Average: 0.53
Average: 0.75
Average: 0.33
Average: 0.48
Average:
0.6035
Average: 0.354
Average: 0.434
0.712
Average: 0.413
Average: 0.378
Average: 0.683
From the above findings, it is clear that few biometric system algorithms have achieved 0.000 APCER under specific conditions. However, the dataset contains 22 algorithmic submissions under each data set and tier. This shows that solutions need to improve their accuracy levels to minimize presentation attack acceptance rate.
A further summary of test results related to APCER vs. BPCER is given in the knowledge piece of BPCER.
It is evident that if APCER in biometrics is high there is a high chance of identity theft attempts going undetected resulting in bigger threats like:
It is important to keep the face presentation attack detection in place by using an AI-powered facial recognition solution that is compliant with NIST standards in achieving the lowest possible error rates. For this purpose, the facial recognition tool must be regularly tested on NIST metrics with improvements in algorithms to reach a perfect zero. In this way, the solution will become spoof-proof for Biometric PAD (Presentation Attack Detection) using facial recognition. Moreover, the solutions need to improve their liveness detection feature to ensure the prevention of presentation attacks & their error rates well before time.
24 Mar 2025
Fraud Prevention Strategies That Businesses Can Follow in 2025
In 2025, fraud prevention will become more difficult as...
06 Mar 2025
How Deepfake Detection Technolgy Transformed the 7 Major Industries
Deepfake technology is speedily growing from a specific artificial...
05 Mar 2025
Australia Forcing to Implement Age Verification Laws of Social Media
The government has also stressed that any verification processes...
Recent Posts
Replay Attack–How It Works and Methods to Defend Against It
Previous post
What is the False Acceptance Rate (FAR) in Facial Recognition?
Next post
What is BPCER (Bonafide Presentation Classification Error Rate)?
Related Blogs